COMPONENTI FONDAMENTALI DI UN IMPIANTO IDRONICO: LA POMPA

La funzione della pompa all'interno di un circuito idraulico è quella di vincere le resistenze al moto incontrate dal fluido termovettore (acqua o acqua e glicole) nel percorso che lo porta dalla centrale frigorifera all'unità terminale d'impianto (ventilconvettore) compreso il ritorno alla centrale stessa.

E' possibile suddividere tali perdite in concentrate e distribuite.

PERDITE DI CARICO DISTRIBUITE

Sono dovute agli attriti interni al fluido stesso (viscosità) e a quelli esterni (rugosità del condotto)

UNITA' DI MISURA DI TALI PERDITE:

- In termini di pressione: Pascal o bar
- Intermini di altezza del fluido: *metri* o *millimetri* di colonna d'acqua (*m c.a.*)

1 bar = 100.000 Pa = 100 kPa = 10 m c.a. = 10.000 mm c.a.

0.1 bar = 10.000 Pa = 10 kPa = 1 m c.a. = 1.000 mm c.a.

Sono in genere espresse riferendosi alla lunghezza unitaria di condotto (metro di tubo) come è possibile osservare dalle tabelle allegate.

PERDITE DI CARICO DISTRIBUITE

Il dimensionamento delle tubazioni di una rete idraulica è in genere effettuato facendo riferimento a tali perdite.

Nella scelta del diametro più adatto alla portata da inviare all'unità terminale d'impianto, un ruolo molto importante gioca la temperatura dell'acqua.

Quando si utilizza la stessa rete idraulica per distribuire acqua calda o fredda, in relazione alla stagione di riferimento, il dimensionamento della tubazione deve essere fatto considerando il solo funzionamento a freddo.

Il motivo di ciò è che a basse temperature le perdite di carico sono più elevate per effetto dell'aumento della viscosità e della densità del fluido; tutto ciò condiziona enormemente la scelta della pompa

I range di valori entro cui muoversi per il dimensionamento di una rete idraulica è in genere:

Molto importante per la scelta del diametro è inoltre la velocità del fluido nelle tubazioni; il valore ottimale dipende da quattro fattori:

- L'entità delle perdite di carico;
- la rumorosità;
- La corrosione erosione;
- Il trascinamento dell'aria.

PERDITE DI CARICO DISTRIBUITE: VELOCITÀ CONSIGLIATE

TAB. 1 – Velocità (m/s) consigliate per reti ad acqua calda e refrigerata

	Tubazioni principali	Tubazioni secondarie	Derivazioni e corpi scaldanti
Tubi in acciaio	1.5 ÷ 2.5	0.5 ÷ 1.5	0.2 ÷ 0.7
Tubi in rame	0.9 ÷ 1.2	0.5 ÷ 0.9	0.2 ÷ 0.5
Tubi in mat. plastico	1.5 ÷ 2.5	0.5 ÷ 1.5	0.2 ÷ 0.7

In conclusione è opportuno, nella scelta dei diametri delle tubazioni, trovare un giusto compromesso fra le varie esigenze in termini di perdite di carico, rumorosità, corrosione e/o erosione etc... .

PERDITE DI CARICO DISTRIBUITE PER TUBI DI ACCIAIO

				r = perd	lita di ca	rico dist	ribuita [= portat	a [l/h] v	= veloc
Temp	eratura	media a	acqua =	10°C				[m/s _]				
Dn	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"	5"	6"
r	G											
							V					
20	152	296	637	1189	2490	3735	7000	13958	21414	43381	75182	121770
	0,33	0,39	0,48	0,56	0,68	0,75	0,88	1,05	1,17	1,39	1,60	1,81
22	159	311	670	1251	2620	3930	7366	14688	22534	45649	79114	128138
	0,35	0,41	0,50	0,59	0,71	0,79	0,92	1,10	1,23	1,47	1,69	1,91
24	167	326	702	1311	2745	4117	7717	15387	23607	47823	82882	13424
	0,37	0,43	0,53	0,62	0,74	0,83	0,97	1,15	1,29	1,54	1,77	2,00
26	174	340	733	1368	2865	4297	8055	16060	24639	49915	86507	14011
	0,38	0,45	0,55	0,64	0,78	0,86	1,01	1,20	1,34	1,60	1,84	2,08
28	181	354	762	1424	2980	4471	8380	16709	25635	51933	90004	145770
	0,40	0.47	0,57	0,67	0,81	0,90	1,05	1,25	1,40	1,67	1,92	2,17
30	188	367	791	1477	3092	4639	8695	17337	26599	53885	93386	15125
	0,41	0,49	0,59	0,70	0,84	0,93	1,09	1,30	1,45	1,73	1,99	2,25

Corso Progettisti 1° Livello

ESEMPIO: CALCOLO DELLE PERDITE DI CARICO DISTRIBUITE

portata d'acqua refrigerata: 16000 litri/ora;

temperatura in mandata: 7°C;

temperatura in ritorno: 12°C;

(temperatura media circa pari a 10°C)

lunghezza L del circuito: 60 metri.

Determinare il diametro del tubo (che supponiamo dover essere in acciaio) e, calcolare la perdita di carico distribuita lungo il circuito.

Facendo uso della tabella si entra con il valore della portata e si ottiene in verticale il diametro da assegnare al tubo ed in orizzontale la perdita di carico distribuita per ogni metro di tubo:

ESEMPIO: STIMA DEL DIAMETRO DEL TUBO

				r = nerd	ita di ca	rico dist	ribuita [mm C A	/ ml G	= portat	a [l/h] v	- voloc
Temp	eratura	media a			ita di ca	neo dist	inbuita [[m/s _]		– portat	a [i/ii] v	- veioc
Dn	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"	5"	6"
r	G											
20	152	296	637	1189	2490	3735	v 7000	13958	21414	43381	75182	121770
	0,33	0,39	0,48	0,56	0,68	0,75	0,88	1,05	1,17	1,39	1,60	1,81
22	159	311	670	1251	2620	3930	7366	14688	22534	45649	79114	128138
	0,35	0,41	0,50	0,59	0,71	0,79	0,92	1,10	1,23	1,47	1,69	1,91
24	167	326	702	1311	2745	4117	7717	15387	23607	47823	82882	13424
	0,37	0,43	0,53	0,62	0,74	0,83	0,97	1,15	1,29	1,54	1,77	2,00
26 🗲	174	340	733	1368	2865	4297	8055	16060	24639	49915	86507	14011
	0,38	0,45	0,55	0,64	0,78	0,86	1,01	1,20	1,34	1,60	1,84	2,08
28	181	354	762	1424	2980	4471	8380	16709	25635	51933	90004	145776
	0,40	0.47	0,57	0,67	0,81	0,90	1,05	1,25	1,40	1,67	1,92	2,17
30	188	367	791	1477	3092	4639	8695	17337	26599	53885	93386	15125
30	0,41	0,49	0,59	0,70	0,84	0,93	1,09	1,30	1,45	1,73	1,99	2,25

Corso Progettisti 1° Livello

ESEMPIO: STIMA DEL DIAMETRO DEL TUBO

Dalla tabella si ottiene:

- Diametro nominale tubo: D = 2 1/2"
- Perdita di carico distribuita al metro: r = 26 mm C.A.
- Velocità dell'acqua: 1,20 m/s

La perdita di carico continua per l'intero circuito è data da:

 $R = r \times L = 26 \text{ [mm C.A./m]} \times 60 \text{ [m]} = 1560 \text{ mm C.A.} \approx 15,6 \text{ kPa}$

PERDITE DI CARICO CONCENTRATE

Sono le perite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze accidentali o delle irregolarità di percorso (riduzioni o allargamenti, curve, valvole, organi di regolazione, etc..)

METODOLOGIE DI CALCOLO

Tali perdite possono essere determinate mediante uno dei seguenti metodi di calcolo:

- Metodo diretto: si basa sulla determinazione di un coefficiente il cui valore dipende dalla forma della resistenza accidentale;
- Metodo delle portate nominali: fa riferimento (per ogni resistenza) alla portata corrispondete ad una perdita di carico unitaria (1 bar o 0.01 bar);
- Metodo delle lunghezze equivalenti: si sostituisce ogni resistenza accidentale con una lunghezza di tubo equivalente in grado cioè di dare la stessa perdita di carico.

Nella tabelle allegate sono riportati i valori dei coefficienti di perdita ζ_i per i vari componenti d'impianto, i valori di perdita in funzione dei ζ_i e della velocità v per acqua a 80 °C, la correzione da applicare per

temperature dell'acqua differenti da 80 °C.

COEFFICIENTI DI PERDITA CONCENTRATA k

Diametro interno (tubi in rame e tubi in PEX) Diametro esterno (tubi in acciaio)	8÷16 mm 3/8" ÷ 1/2"	18÷28 mm 3/4" ÷ 1"	30÷54 mm 1 1/4" ÷ 2"	> 54 mm > 2"				
Tipologia di accidentalità			2					
Curva larga a 90° con rapporto R/D > 3,5	1,0	0,5	0,3	0,3				
Curva normale a 90° con rapporto R/D = 2,5	1,5	1,0	0,5	0,4				
Curva stretta a 90° con rapporto R/D = 1,5	2,0	1,5	1,0	0,8				
Allargamento di sezione	1,0							
Restringimento di sezione	0,5							
Diramazione o confluenza a T	3,0							
Valvola a sfera a passaggio totale	0,2	0,2	0,1	0,1				
Valvola a sfera a passaggio ridotto	1,6	1,0	0,8	0,6				
Valvola a ritegno	3,0	2,0	1,0	1,0				
Valvola a tre vie	10,0	10,0	8,0	8,0				

